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Two equation models predict an anomalously large growth of 
turbulent kinetic energy in stagnation point flows (Strahle 1985; 
Launder and Kato 1993). Even when the stagnation point region 
is not of interest per se, this spurious behavior can upset the rest 
of the flow computation. The present paper describes one aspect 
of the stagnation point anomoly, as it occurs eddy-viscosity 
models based on transport equations for velocity and time scales; 
it is not meant to be a comprehensive survey of strategies that 
have been advanced to deal with various other aspects of stagna- 
tion point flow. 

The usual explanation for the stagnation point anomaly is that 
the eddy-viscosity formula 

ui% = - 2v tS  0 + ~k~ij  (1) 

gives an erroneous normal stress difference (Launder and Kato 
1993). In 1, Sq  = (OiU j + O/U/)/2 is the rate of strain and 

v, = C~t'ZT (2) 

is the eddy viscosity in the form used in two-equation models, v 2 
is the velocity scale - -  k in the k - e  model - -  and T is the 
turbulent time scale - -  k / e  in the k - e  model, although the 
Kolmogoroff scale ( v / e )  172 is more suitable near the wall of a 
high Reynolds number boundary layer (Durbin 1991). 

Some of my computations suggest an additional considera- 
tion: in these computations, as the stagnation point was ap- 
proached, T became very large. The e-equation is of the form 

0 t e + U . V e  T + V .  v +  % 1  

where the rate of turbulent energy production is 

, ~  = 2 v t S G S j i  (4) 

A large value of T in 3 causes the production of e to be too 
small, allowing spuriously high turbulent kinetic energy. The 
kinetic energy is obtained by solving 

~ , k + U . V k = ~ - e + V .  v + - -  Vk (5) 
O" K 

The stagnation point anomaly can be ameliorated by imposing 
the "realizability" constraint 2k > u2> 0 upon (1) via a bound 
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on the time scale. The rate of strain tensor Sij is symmetric and 
becomes purely diagonal in principal-axes coordinates. The diag- 
onal elements, k,~, et = 1 , . . . ,  3, are its eigenvalues and satisfy 

X2 q'- ~k22"~ ~k2 = S i jS j i  ISI 2 3 -~ (6) 

In incompressible flow 

h 1 + X 2 + h 3 = 0 (7) 

It follows from (6) and (7) that 

I h~, I = ~ S I  2/2 ( 8 )  

in two dimensions (i.e., when ~ 3  = 0) ,  and 

[ X,~ I < V/2 IS I 2/3 ( 9 )  

in three dimensions. 
If (1) is written in the principal axes of Sq, it becomes 

2 - - 2 V t K  a + 2 k  ( 1 0 )  

2 2 Of the constraints u,~> 0 and 2k>_ u~,, Va the former is more 
stringent. [Proof: the former requires 

2 v t m a x h  ~ < 2k (11) 
c~ 

while the latter requires 

2v/minh,~ >_ - 4k 
ot 

(N.B., max h,~ _> 0 and min h,~ < 0). From (7) 

min h,~ > - 2  max he, 

Multiplying by 2v t and assuming that the constraint ( l l )  is 
satisfied 

2 V  t min h,~ > --4V t max h,~ 

> -- ~k 

Thus, the second constraint follows if the first (i.e., Equation 11) 
is met.] 

Substituting Equation 2 into 11 results in the time-scale bound 

k 1 
r <  _ (12) 

-- 3v2C~ max ha 

which gives 

2k 1 
- -  2 ( 1 3 )  r_< 37~c ~ ~ s f  
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Figure 1 k/U 2 along the stagnat ion streaml ine:  - -  
15 imposed;  . . . . .  , w i t hou t  constraint  

, w i th  

in two dimensions, and 

2k ~ 81S123 r_< 3 7 C ~  (14) 

in three dimensions. These bounds might be imposed computa- 
tionally by using 

T = min 7 '  3v'-2C~ (15) 

in Equations 2, 3, and elsewhere that T is needed. Any alterna- 
tive to Equation 15 that is sufficient to ensure 13 and 14 can be 
used: for instance, the second factor in 15 could be multiplied by 
an empirical constant < 1. Such a constant could be used to 
obtain agreement to an experimental datum; but that is beyond 
the scope of the present brief communication. 

By Equations 4 and 11, the rate of energy production becomes 
linear in the modulus of the mean rate of strain when the bound 
12 is attained 

2 ISI 2 
g <  - k  

3 max )t~, 

= 2 k  2 ~ S I 2  in 2 - D  (16) 

This is significant because one-equation models do not experi- 
ence a stagnation point anomaly, although they may be motivated 
by the k - e  model (Baldwin and Barth 1990). The production 
term in one-equation models is linear in the rate of strain, as is 
16. 

Launder and Kato (1993) and Menter (1992) avoided the 
stagnation point anomaly by replacing rate of strain by vorticity 
in .~  so that energy would not grow in a potential flow. This 
device would cause spurious production in rotating or swirling 
flow; also, it is erroneous to suppose that turbulence is not 
amplified by irrotational strains. Menter (1993) imposed a limit 
on . .~/e ,  which might correspond to using 16 directly as a 
constraint. Strahle (1985) noted that if C~ = C~,  then a ,~ = e 

• , 1 . 2  

equilibrium could be estabhshed m the stagnating flow, thereby 
avoiding the anomoly. However, in equilibrium straining how 

> e, so this is not an attractive suggestion per se. All these 

(a) 

Ca) 
Figure 2 Contours of  constant k/O~; (a), w i th  15 imposed;  (b), 
w i thou t  constraint;  contour  intervals of 1.5× 10 -3  

approaches, as well as the present, can be characterized as 
preventing uncontrolled growth of ,.@/e. Second-moment closure 
models include evolution equations for the normal stresses, and 
this permits a more elaborate approach to the stagnation point 
problem (Craft et al. 1993). The present paper is not addressed to 
second-moment closure, but 15 might be helpful there, also. 

Figure 1 shows k along the stagnation streamline of a 
NACA4412 airfoil at zero angle of attack and with k = 4 × 10 -4 
U 2 in the approach flow. This computation was done with the 
k - e - v  2 model (Durbin 1995), which can be integrated to the 
surface without need for damping functions. The two curves 
show the solution with and without 15 imposed. The constraint 
prevents the large growth of K, although some amplification still 
occurs. Figure 2 shows contours of constant k for the two cases. 

Flat plate, zero, and adverse pressure gradient boundary-layer 
computations produced exactly the same solution with and with- 
out 15 imposed. In the log-layer, the ratio of the second term to 
the first is 1 / 3 ~  = 1.92, so that T =  k / e  satisfies Equation 

12. 
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